
Deploying React App With NodeJS Backend on AKS

and storing the image on ACR

Problem Statement –

Traditionally concept of using VM which are very slow & hard to manage. Even the VMs also

not cost efficient. Docker came into the picture. Containers require less system resources than

traditional or hardware virtual machine environments because they don't include operating

system images. Applications running in containers can be deployed easily to multiple different

operating systems and hardware platforms.

But handling the Multiple container was a very critical task. Even providing the high

availability and having scalable containerised application was difficult to achieve .

Introduction:-

Inorder to handle the multiple complex containers the Kubernetes comes into the picture.

Kubernetes(also known as K8s) handles the container efficiently by creating the cluster.

Kubernetes helps in providing the high availability & low latency of the application to the end

user. Kubernetes extends how we scale containerized applications so that we can enjoy all the

benefits of a truly immutable infrastructure. The general rule of thumb for K8S: if your app fits

in a container, Kubernetes will deploy it.

Kubernetes basic terms and definitions:

To begin understanding how to use K8S, we must understand the objects in the API. Basic

K8S objects and several higher-level abstractions are known as controllers. These are the

building block of your application lifecycle.

Basic objects include:

• Pod. A group of one or more containers.

• Service. An abstraction that defines a logical set of pods as well as the policy for

accessing them.

• Volume. An abstraction that lets us persist data. (This is necessary because

containers are ephemeral—meaning data is deleted when the container is

deleted.)

• Namespace. A segment of the cluster dedicated to a certain purpose, for example

a certain project or team of devs.

Controllers, or higher-level abstractions, include:

• ReplicaSet (RS). Ensures the desired amount of pod is what’s running.

• Deployment. Offers declarative updates for pods an RS.

• StatefulSet. A workload API object that manages stateful applications, such as

databases.

• DaemonSet. Ensures that all or some worker nodes run a copy of a pod. This is

useful for daemon applications like Fluentd.

https://www.bmc.com/blogs/kubernetes-replicaset/
https://github.com/fluent/fluentd

• Job. Creates one or more pods, runs a certain task(s) to completion, then deletes

the pod(s).

Kubernetes architecture and components

A K8S cluster is made of a master node, which exposes the API, schedules deployments, and

generally manages the cluster. Multiple worker nodes can be responsible for container

runtime, like Docker or rkt, along with an agent that communicates with the master.

Master components

These master components comprise a master node:

• Kube-apiserver. Exposes the API.

• Etcd. Key value stores all cluster data. (Can be run on the same server as a

master node or on a dedicated cluster.)

• Kube-scheduler. Schedules new pods on worker nodes.

• Kube-controller-manager. Runs the controllers.

• Cloud-controller-manager. Talks to cloud providers.

Node components

• Kubelet. Agent that ensures containers in a pod are running.

• Kube-proxy. Keeps network rules and perform forwarding.

• Container runtime. Runs containers.

 Kubernetes Architechture

https://github.com/docker/docker
https://github.com/coreos/rkt

Inorder to create a K8s cluster on Azure Microsoft created a solution named as Azure

Kubernetes Service(AKS) . AKS is Microsoft Azure’s managed Kubernetes solution that lets

you run and manage containerized applications in the cloud. Since this is a managed Kubernetes

service, Microsoft takes care of a lot of things for us such as security, maintenance, scalability,

and monitoring. This makes us quickly deploy our applications into the Kubernetes cluster

without worrying about the underlying details of building it.

Solution:-

Some steps and pre-requisite needs to be followed:

• Cloning from github

• Install Azure CLI and Configure

• Dockerize the Project

• Pushing Docker Image To Container Registry

• Creating AKS Cluster

• Configure Kuebctl With AKS Cluster

• Deploy Kubernetes Objects On Azure AKS Cluster

• Access the WebApp from the browser

Cloning from github:

Github repository: https://github.com/imabhayvarshney/react-nodejs-aks.git

Install Azure CLI and Configure

Once you have the Azure Account you can install Azure CLI. You can go to the below

documentation and install Azure CLI based on your operation system. You can configure

Azure CLI with your subscription.

• Install Azure CLI

• Login into your account

https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/get-started-with-azure-cli?view=azure-cli-latest

Dockerize the Project

Download Docker Desktop from the given link: - https://hub.docker.com

Run the installer for docker and follow the basic steps. Let it complete the installation

Start the Docker Desktop service by launching the application. You should receive the

following screen upon successful installation and is ready for work.

https://hub.docker.com/

Azure AKS is a managed service that makes it easy for you to run Kubernetes on Azure. The

first thing you need to do is to dockerize your project which we cloned from github.

Here is the Dockerfile and it is using multi-stage builds to reduce the image size and surface

attacks.

Dockerfile:

FROM node:10 AS ui-build

WORKDIR /usr/src/app

COPY my-app/ ./my-app/

RUN cd my-app && npm install && npm run build

FROM node:10 AS server-build

WORKDIR /root/

COPY --from=ui-build /usr/src/app/my-app/build ./my-app/build

COPY api/package*.json ./api/

RUN cd api && npm install

COPY api/server.js ./api/

EXPOSE 3080

CMD ["node", "./api/server.js"]

Here are the commands to build the image and run it on the Docker engine on your local

machine. If you are new to Docker and check this detailed post on this topic.

Dockerizing React App With NodeJS Backend

https://medium.com/bb-tutorials-and-thoughts/dockerizing-react-app-with-nodejs-backend-26352561b0b7

// build the image

docker build -t react-node-image .

// running on Image

docker run -it -p 3080:3080 --name react-node-ui react-node-image

// list the image you just built

docker images

// list the container

docker ps

Pushing Docker Image To Container Registry

Azure container registry builds, store, secure, scan, replicate, and manage container images

and artifacts with a fully managed, geo-replicated instance of OCI distribution. Connect across

environments, including Azure Kubernetes Service and Azure Red Hat OpenShift, and across

Azure services like App Service, Machine Learning, and Batch.

Azure AKS works with any Docker registry such as Docker Hub, etc. But, here, we see how

we can use the Azure container registry to store our Docker images. Once you set up the

Azure portal account and creates a resource group as above you can create a container registry

as below.

https://github.com/opencontainers/distribution-spec

Once you review and create you can see the following screen.

You can see the main container registry page below.

You can do the same things with the Azure CLI with the following commands. Make sure you

log in to your Azure Account with CLI with this command az login before running the below

commands.

// create a resource group

az group create --name k8s-demo --location westus

// create a container registry

az acr create --resource-group k8s-demo \

 --name regfrontend --sku Basic

It’s time to build and push the Docker image with the following command. After cloning the

above project and go to the root folder where Dockerfile resides and run this command.

az acr build --image aksdemo/react-nodejs:v1 \

 --registry regfrontend \

 --file Dockerfile .

You will see the output below

You can see all the details in the portal as well.

If you want to pull this repository you need to use this command.

docker pull regfrontend.azurecr.io/aksdemo/react-nodejs:v1

Creating AKS Cluster

First, you need a resource group for all your resources. Let’s create a resource with the

following command.

az group create --name k8s-demo --location westus

Let’s create a cluster with the following command. Notice that we are using the same resource

group that we created above. You can see the JSON formatted result after a few minutes.

az aks create --resource-group k8s-demo --name frontend-cluster --node-count 3 --enable-addons

monitoring --generate-ssh-keys

You can see the following cluster in the console.

Configure Kubectl With AKS Cluster

Kubectl is the command-line utility for the Kubernetes. You need to install kubectl before you

configure it. Run the first command only if you don’t have kubectl on your local machine.

// install CLI
az aks install-cli

// connect to your cluster
az aks get-credentials --resource-group k8s-demo --name frontend-cluster

// get all the contexts
kubectl config get-contexts

// verify the current context
kubectl config current-context

// get the node
kubectl get nodes

Deploy Kubernetes Objects on Azure AKS Cluster

Now we have configured kubectl to use Azure AKS from our own machine. You need to

integrate the container registry with the AKS. Let’s attach the container registry with the

cluster with the following command.

az aks update -n frontend-cluster -g k8s-demo --attach-acr regfrontend

Let’s create deployment and service objects and use the image from the Azure container

registry. Here is the manifest file which contains these objects.

apiVersion: apps/v1

kind: Deployment

metadata:

 creationTimestamp: null

 labels:

 app: react-webapp

 name: react-webapp

spec:

 replicas: 5

 selector:

 matchLabels:

 app: react-webapp

 strategy: {}

 template:

 metadata:

 creationTimestamp: null

 labels:

 app: react-webapp

 spec:

 containers:

 - image: regfrontend.azurecr.io/aksdemo/react-nodejs:v1

 name: webapp

 imagePullPolicy: Always

 resources: {}

 ports:

 - containerPort: 3080

status: {}

apiVersion: v1

kind: Service

metadata:

 name: react-webapp

 labels:

 run: react-webapp

spec:

 ports:

 - port: 3080

 protocol: TCP

 selector:

 app: react-webapp

 type: LoadBalancer

If you cloned the above example project and you are at the root folder just use this command

to create objects

 kubectl create -f manifest.yml

K8s objects created

You can use the following commands to verify all the objects are in the desired state.

// list the deployment

kubectl get deploy

// list the pods

kubectl get pod

// list the service

kubectl get svc

We can see 5 pods running since we have defined 5 replicas for the deployment.

Access the WebApp from the browser

We have created a service with the LoadBalancer type. You can get the external IP from the

service and access the entire from the browser.

service

You can access the webapp with the following URL

http://13.86.186.222:3080

